Journal Article FZJ-2022-04534

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Identification of MIMO Wiener-type Koopman models for data-driven model reduction using deep learning

 ;  ;

2022
Elsevier Science Amsterdam [u.a.]

Computers & chemical engineering 161, 107781 - () [10.1016/j.compchemeng.2022.107781]

This record in other databases:    

Please use a persistent id in citations:   doi:

Classification:

Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) (POF4-112)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-1
Workflow collections > Public records
IEK > IEK-10
Publications database
Open Access

 Record created 2022-11-10, last modified 2024-07-12


OpenAccess:
2201.12669 - Download fulltext PDF
10.1016_j.compchemeng.2022.107781 - Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)