Preprint FZJ-2022-05378

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Decomposing neural networks as mappings of correlation functions

 ;  ;  ;  ;  ;

2022
arXiv

arXiv () [10.48550/arXiv.2202.04925]

This record in other databases:

Please use a persistent id in citations:   doi:  doi:

Abstract: Understanding the functional principles of information processing in deep neural networks continues to be a challenge, in particular for networks with trained and thus non-random weights. To address this issue, we study the mapping between probability distributions implemented by a deep feed-forward network. We characterize this mapping as an iterated transformation of distributions, where the non-linearity in each layer transfers information between different orders of correlation functions. This allows us to identify essential statistics in the data, as well as different information representations that can be used by neural networks. Applied to an XOR task and to MNIST, we show that correlations up to second order predominantly capture the information processing in the internal layers, while the input layer also extracts higher-order correlations from the data. This analysis provides a quantitative and explainable perspective on classification.

Keyword(s): Disordered Systems and Neural Networks (cond-mat.dis-nn) ; Machine Learning (stat.ML) ; FOS: Physical sciences ; FOS: Computer and information sciences


Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5232 - Computational Principles (POF4-523) (POF4-523)
  2. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  3. ACA - Advanced Computing Architectures (SO-092) (SO-092)
  4. RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) (BMBF-01IS19077A)
  5. MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018) (HGF-SMHB-2014-2018)
  6. neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002) (EXS-SF-neuroIC002)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > INM > INM-10
Institutssammlungen > IAS > IAS-6
Institutssammlungen > INM > INM-6
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-12-01, letzte Änderung am 2024-03-13


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)