Contribution to a conference proceedings FZJ-2022-06229

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Fast Hybrid Deep Neural Network Model for pushing behavior detection in human crowds

 ;  ;

2023
IEEE

2022 IEEE/ACS 19th International Conference on Computer Systems and Applications, AICCSA, Zayed University, Abu DhabiZayed University, Abu Dhabi, U Arab Emirates, 5 Dec 2022 - 7 Dec 20222022-12-052022-12-07 IEEE 1-2 () [10.1109/AICCSA56895.2022.10017883]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Deep learning technology is regarded as one of the latest advances in data science and analytics due to its learning abilities from the data. As a result, deep learning is widely applied in the human crowd analysis domain. Although it has achieved remarkable success in this area, a fast and robust model for pushing behavior detection in the human crowd is unavailable. This paper proposes a model that allows crowd-monitoring systems to detect pushing behavior early, helping organizers make timely decisions before dangerous situations appear. This particularly becomes more challenging when applied to real-time video streams of crowded events, which the proposed model accomplishes with reasonable time latency. To achieve this, the model employs a hybrid deep neural network.


Contributing Institute(s):
  1. Zivile Sicherheitsforschung (IAS-7)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. Pilotprojekt zur Entwicklung eines palästinensisch-deutschen Forschungs- und Promotionsprogramms 'Palestinian-German Science Bridge' (01DH16027) (01DH16027)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Institutssammlungen > IAS > IAS-7
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-12-20, letzte Änderung am 2023-03-28


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)