Journal Article FZJ-2022-06268

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Real-time monitoring of aerosol particle formation from sulfuric acid vapor at elevated concentrations and temperatures

 ;  ;  ;  ;  ;  ;  ;

2022
RSC Publ. Cambridge

Physical chemistry, chemical physics 24(8), 5001 - 5013 () [10.1039/D1CP04580F]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In the present study, time-resolved aerosol particle formation from sulfuric acid vapor is examined with special attention to the stabilization of molecular clusters in the early phase of unary nucleation. An important factor governing this process is the amount of condensable acid vapor. Here it is produced from fast gas-phase reactions in a batch-type reaction cell for which we introduce modifications enabling real-time monitoring. The key component for size- and time-resolved detection of ultrafine particles is a new 1 nm-SMPS. With this new tool at hand, the effect of varying the precursor concentration over two orders of magnitude is investigated. We demonstrate the ability to tune between different growth scenarios as indicated by the size-resolved particle traces which exhibit a transition from sigmoidal over quasi-stationary to peak-like shape. The second key parameter relevant for nucleation studies is the temperature-dependent cluster evaporation. Due to a temperature rise during the mixing stage of the experiment, evaporation is strongly promoted in the early phase. Therefore, the present study extends the T-range used in, e.g., smog chambers. We investigate this temperature effect in a kinetic simulation and can successfully combine simulated and measured data for validating theoretical evaporation rates obtained from DLPNO-CCSD(T0)-calculations.

Classification:

Contributing Institute(s):
  1. Troposphäre (IEK-8)
Research Program(s):
  1. 2111 - Air Quality (POF4-211) (POF4-211)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > ICE > ICE-3
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-8
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2022-12-21, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)