Preprint FZJ-2023-00757

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Graph Machine Learning for Design of High-Octane Fuels

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2022
arXiv

arXiv () [10.48550/ARXIV.2206.00619]

This record in other databases:

Please use a persistent id in citations:   doi:

Abstract: Fuels with high-knock resistance enable modern spark-ignition engines to achieve high efficiency and thus low CO2 emissions. Identification of molecules with desired autoignition properties indicated by a high research octane number and a high octane sensitivity is therefore of great practical relevance and can be supported by computer-aided molecular design (CAMD). Recent developments in the field of graph machine learning (graph-ML) provide novel, promising tools for CAMD. We propose a modular graph-ML CAMD framework that integrates generative graph-ML models with graph neural networks and optimization, enabling the design of molecules with desired ignition properties in a continuous molecular space. In particular, we explore the potential of Bayesian optimization and genetic algorithms in combination with generative graph-ML models. The graph-ML CAMD framework successfully identifies well-established high-octane components. It also suggests new candidates, one of which we experimentally investigate and use to illustrate the need for further auto-ignition training data.

Keyword(s): Machine Learning (cs.LG) ; FOS: Computer and information sciences


Contributing Institute(s):
  1. Modellierung von Energiesystemen (IEK-10)
Research Program(s):
  1. 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) (POF4-112)

Appears in the scientific report 2022
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Institutssammlungen > ICE > ICE-1
Dokumenttypen > Berichte > Vorabdrucke
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-10
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-01-17, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)