000943451 001__ 943451
000943451 005__ 20240313103127.0
000943451 0247_ $$2doi$$a10.7554/eLife.77009
000943451 0247_ $$2Handle$$a2128/34377
000943451 0247_ $$2pmid$$a36700545
000943451 0247_ $$2WOS$$aWOS:000943249500001
000943451 037__ $$aFZJ-2023-01023
000943451 082__ $$a600
000943451 1001_ $$0P:(DE-Juel1)171197$$aZajzon, Barna$$b0$$eCorresponding author
000943451 245__ $$aSignal denoising through topographic modularity of neural circuits
000943451 260__ $$aCambridge$$beLife Sciences Publications$$c2023
000943451 3367_ $$2DRIVER$$aarticle
000943451 3367_ $$2DataCite$$aOutput Types/Journal article
000943451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683536270_21725
000943451 3367_ $$2BibTeX$$aARTICLE
000943451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000943451 3367_ $$00$$2EndNote$$aJournal Article
000943451 520__ $$aInformation from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally-relevant operating regimes, and provide an in-depth theoretical analysis unravelling the dynamical principles underlying the mechanism.
000943451 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000943451 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000943451 536__ $$0G:(DE-82)EXS-SF-neuroIC002$$aneuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)$$cEXS-SF-neuroIC002$$x2
000943451 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000943451 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000943451 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b1
000943451 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2
000943451 7001_ $$0P:(DE-Juel1)165640$$aDuarte, Renato$$b3
000943451 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.77009$$gVol. 12, p. e77009$$pe77009$$teLife$$v12$$x2050-084X$$y2023
000943451 8564_ $$uhttps://juser.fz-juelich.de/record/943451/files/Invoice_P010446.pdf
000943451 8564_ $$uhttps://juser.fz-juelich.de/record/943451/files/elife-77009-v2.pdf$$yOpenAccess
000943451 8564_ $$uhttps://juser.fz-juelich.de/record/943451/files/prepub_elife-77009-v1.pdf$$yOpenAccess
000943451 8767_ $$8P010446$$92023-01-27$$a1200190344$$d2023-02-03$$eAPC$$jZahlung erfolgt$$zUSD 3000,-
000943451 909CO $$ooai:juser.fz-juelich.de:943451$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000943451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171197$$aForschungszentrum Jülich$$b0$$kFZJ
000943451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b1$$kFZJ
000943451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
000943451 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000943451 9141_ $$y2023
000943451 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000943451 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000943451 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000943451 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000943451 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
000943451 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-23
000943451 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-23T12:20:44Z
000943451 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-23T12:20:44Z
000943451 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
000943451 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-23
000943451 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000943451 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-23
000943451 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000943451 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2022$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-23T12:20:44Z
000943451 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-22
000943451 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2022$$d2023-08-22
000943451 920__ $$lyes
000943451 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000943451 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000943451 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000943451 9801_ $$aAPC
000943451 9801_ $$aFullTexts
000943451 980__ $$ajournal
000943451 980__ $$aVDB
000943451 980__ $$aUNRESTRICTED
000943451 980__ $$aI:(DE-Juel1)INM-6-20090406
000943451 980__ $$aI:(DE-Juel1)IAS-6-20130828
000943451 980__ $$aI:(DE-Juel1)INM-10-20170113
000943451 980__ $$aAPC
000943451 981__ $$aI:(DE-Juel1)IAS-6-20130828