Journal Article FZJ-2023-01023

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Signal denoising through topographic modularity of neural circuits

 ;  ;  ;

2023
eLife Sciences Publications Cambridge

eLife 12, e77009 () [10.7554/eLife.77009]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally-relevant operating regimes, and provide an in-depth theoretical analysis unravelling the dynamical principles underlying the mechanism.

Classification:

Contributing Institute(s):
  1. Computational and Systems Neuroscience (INM-6)
  2. Theoretical Neuroscience (IAS-6)
  3. Jara-Institut Brain structure-function relationships (INM-10)
Research Program(s):
  1. 5232 - Computational Principles (POF4-523) (POF4-523)
  2. SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) (HGF-SMHB-2013-2017)
  3. neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002) (EXS-SF-neuroIC002)
  4. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-10
Institute Collections > IAS > IAS-6
Institute Collections > INM > INM-6
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-01-27, last modified 2024-03-13


OpenAccess:
prepub_elife-77009-v1 - Download fulltext PDF
elife-77009-v2 - Download fulltext PDF
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)