000972119 001__ 972119
000972119 005__ 20240610121038.0
000972119 0247_ $$2doi$$a10.1021/acsnano.2c05801
000972119 0247_ $$2ISSN$$a1936-0851
000972119 0247_ $$2ISSN$$a1936-086X
000972119 0247_ $$2Handle$$a2128/33931
000972119 0247_ $$2pmid$$a36669092
000972119 0247_ $$2WOS$$aWOS:000921840800001
000972119 037__ $$aFZJ-2023-01081
000972119 082__ $$a540
000972119 1001_ $$0P:(DE-Juel1)185956$$aMidya, Jiarul$$b0$$ufzj
000972119 245__ $$aMembrane-Mediated Interactions Between Nonspherical Elastic Particles
000972119 260__ $$aWashington, DC$$bSoc.$$c2023
000972119 3367_ $$2DRIVER$$aarticle
000972119 3367_ $$2DataCite$$aOutput Types/Journal article
000972119 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676638187_14272
000972119 3367_ $$2BibTeX$$aARTICLE
000972119 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000972119 3367_ $$00$$2EndNote$$aJournal Article
000972119 520__ $$aThe transport of particles across lipid-bilayer membranes is important for biological cells to exchange information and material with their environment. Large particles often get wrapped by membranes, a process which has been intensively investigated in the case of hard particles. However, many particles in vivo and in vitro are deformable, e.g., vesicles, filamentous viruses, macromolecular condensates, polymer-grafted nanoparticles, and microgels. Vesicles may serve as a generic model system for deformable particles. Here, we study nonspherical vesicles with various sizes, shapes, and elastic properties at initially planar lipid-bilayer membranes. Using the Helfrich Hamiltonian, triangulated membranes, and energy minimization, we predict the interplay of vesicle shapes and wrapping states. Increasing particle softness enhances the stability of shallow-wrapped and deep-wrapped states over nonwrapped and complete-wrapped states. The free membrane mediates an interaction between partial-wrapped vesicles. For the pair interaction between deep-wrapped vesicles, we predict repulsion. For shallow-wrapped vesicles, we predict attraction for tip-to-tip orientation and repulsion for side-by-side orientation. Our predictions may guide the design and fabrication of deformable particles for efficient use in medical applications, such as targeted drug delivery.
000972119 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000972119 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000972119 7001_ $$0P:(DE-Juel1)130514$$aAuth, Thorsten$$b1
000972119 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author
000972119 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.2c05801$$gp. acsnano.2c05801$$n3$$p1935–1945$$tACS nano$$v17$$x1936-0851$$y2023
000972119 8564_ $$uhttps://juser.fz-juelich.de/record/972119/files/acsnano.2c05801.pdf$$yOpenAccess
000972119 8767_ $$d2023-02-01$$eHybrid-OA$$jPublish and Read
000972119 909CO $$ooai:juser.fz-juelich.de:972119$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000972119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185956$$aForschungszentrum Jülich$$b0$$kFZJ
000972119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130514$$aForschungszentrum Jülich$$b1$$kFZJ
000972119 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000972119 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000972119 9141_ $$y2023
000972119 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000972119 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000972119 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-18
000972119 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000972119 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-18
000972119 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000972119 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
000972119 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
000972119 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
000972119 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
000972119 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
000972119 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2022$$d2023-10-25
000972119 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bACS NANO : 2022$$d2023-10-25
000972119 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000972119 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000972119 9801_ $$aAPC
000972119 9801_ $$aFullTexts
000972119 980__ $$ajournal
000972119 980__ $$aVDB
000972119 980__ $$aUNRESTRICTED
000972119 980__ $$aI:(DE-Juel1)IBI-5-20200312
000972119 980__ $$aAPC
000972119 980__ $$aI:(DE-Juel1)IAS-2-20090406
000972119 981__ $$aI:(DE-Juel1)IAS-2-20090406