Journal Article FZJ-2023-01081

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Membrane-Mediated Interactions Between Nonspherical Elastic Particles

 ;  ;

2023
Soc. Washington, DC

ACS nano 17(3), 1935–1945 () [10.1021/acsnano.2c05801]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The transport of particles across lipid-bilayer membranes is important for biological cells to exchange information and material with their environment. Large particles often get wrapped by membranes, a process which has been intensively investigated in the case of hard particles. However, many particles in vivo and in vitro are deformable, e.g., vesicles, filamentous viruses, macromolecular condensates, polymer-grafted nanoparticles, and microgels. Vesicles may serve as a generic model system for deformable particles. Here, we study nonspherical vesicles with various sizes, shapes, and elastic properties at initially planar lipid-bilayer membranes. Using the Helfrich Hamiltonian, triangulated membranes, and energy minimization, we predict the interplay of vesicle shapes and wrapping states. Increasing particle softness enhances the stability of shallow-wrapped and deep-wrapped states over nonwrapped and complete-wrapped states. The free membrane mediates an interaction between partial-wrapped vesicles. For the pair interaction between deep-wrapped vesicles, we predict repulsion. For shallow-wrapped vesicles, we predict attraction for tip-to-tip orientation and repulsion for side-by-side orientation. Our predictions may guide the design and fabrication of deformable particles for efficient use in medical applications, such as targeted drug delivery.

Classification:

Contributing Institute(s):
  1. Theoretische Physik der Lebenden Materie (IBI-5)
  2. Theorie der Weichen Materie und Biophysik (IAS-2)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-02-01, last modified 2024-06-10


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)