Journal Article FZJ-2023-01389

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Molecular determinants of acrylamide neurotoxicity through covalent docking

 ;  ;

2023
Frontiers Media Lausanne

Frontiers in pharmacology 14, 1125871 () [10.3389/fphar.2023.1125871]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Acrylamide (ACR) is formed during food processing by Maillard reaction between sugars and proteins at high temperatures. It is also used in many industries, from water waste treatment to manufacture of paper, fabrics, dyes and cosmetics. Unfortunately, cumulative exposure to acrylamide, either from diet or at the workplace, may result in neurotoxicity. Such adverse effects arise from covalent adducts formed between acrylamide and cysteine residues of several neuronal proteins via a Michael addition reaction. The molecular determinants of acrylamide reactivity and its impact on protein function are not completely understood. Here we have compiled a list of acrylamide protein targets reported so far in the literature in connection with neurotoxicity and performed a systematic covalent docking study. Our results indicate that acrylamide binding to cysteine is favored in the presence of nearby positively charged amino acids, such as lysines and arginines. For proteins with more than one reactive Cys, docking scores were able to discriminate between the primary ACR modification site and secondary sites modified only at high ACR concentrations. Therefore, docking scores emerge as a potential filter to predict Cys reactivity against acrylamide. Inspection of the ACR-protein complex structures provides insights into the putative functional consequences of ACR modification, especially for non-enzyme proteins. Based on our study, covalent docking is a promising computational tool to predict other potential protein targets mediating acrylamide neurotoxicity.

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)
  2. 5252 - Brain Dysfunction and Plasticity (POF4-525) (POF4-525)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IAS > IAS-5
Institute Collections > INM > INM-9
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-03-06, last modified 2024-06-25


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)