Journal Article FZJ-2023-01500

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Unveiling the main factors triggering the coagulation at the SiC ‐blood interface

 ;  ;  ;  ;  ;  ;  ;  ;

2023
Wiley New York, NY [u.a.]

Journal of biomedical materials research / A 111(9), 1322-1332 () [10.1002/jbm.a.37533]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Hemocompatibility is the most significant criterion for blood-contacting materials in successful in vivo applications. Prior to the clinical tests, in vitro analyses must be performed on the biomaterial surfaces in accordance with the ISO 10993-4 standards. Designing a bio-functional material requires engineering the surface structure and chemistry, which significantly influence the blood cell activity according to earlier studies. In this study, we elucidate the role of surface terminations and polymorphs of SiC single crystals in the initial stage of the contact coagulation. We present a detailed analysis of phase, roughness, surface potential, wettability, consequently, reveal their effect on cytotoxicity and hemocompatibility by employing live/dead stainings, live cell imaging, ELISA and Micro BCA protein assay. Our results showed that the surface potential and the wettability strongly depend on the crystallographic polymorph as well as the surface termination. We show, for the first time, the key role of SiC surface termination on platelet activation. This dependency is in good agreement with the results of our in vitro analysis and points out the prominence of cellular anisotropy. We anticipate that our experimental findings bridge the surface properties to the cellular activities, and therefore, pave the way for tailoring advanced hemocompatible surfaces.

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IEK-12)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DEAL Wiley ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
IEK > IEK-12
Publications database
Open Access

 Record created 2023-03-16, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)