Journal Article PreJuSER-10056

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Hybrid functionals within the all-electron FLAPW method: Implementation and applications of PBE0

 ;  ;

2010
APS College Park, Md.

Physical review / B 81(19), 195117 () [10.1103/PhysRevB.81.195117]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We present an efficient implementation of the Perdew-Burke-Ernzerhof hybrid functional PBE0 within the full-potential linearized augmented-plane-wave (FLAPW) method. The Hartree-Fock exchange term, which is a central ingredient of hybrid functionals, gives rise to a computationally expensive nonlocal potential in the one-particle Schrodinger equation. The matrix elements of this exchange potential are calculated with the help of an auxiliary basis that is constructed from products of FLAPW basis functions. By representing the Coulomb interaction in this basis the nonlocal exchange term becomes a Brillouin-zone sum over vector-matrixvector products. The Coulomb matrix is calculated only once at the beginning of a self-consistent-field cycle. We show that it can be made sparse by a suitable unitary transformation of the auxiliary basis, which accelerates the computation of the vector-matrix-vector products considerably. Additionally, we exploit spatial and time-reversal symmetry to identify the nonvanishing exchange matrix elements in advance and to restrict the k summations for the nonlocal potential to an irreducible set of k points. Favorable convergence of the self-consistent-field cycle is achieved by a nested density-only and density-matrix iteration scheme. We discuss the convergence with respect to the parameters of our numerical scheme and show results for a variety of semiconductors and insulators, including the oxides ZnO, EuO, Al2O3, and SrTiO3, where the PBE0 hybrid functional improves the band gaps and the description of localized states in comparison with the PBE functional. Furthermore, we find that in contrast to conventional local exchange-correlation functionals ferromagnetic EuO is correctly predicted to be a semiconductor.

Keyword(s): J


Note: The authors gratefully acknowledge valuable discussions with Gustav Bihlmayer, Martin Schlipf, Frank Freimuth, Marjana Lezaic, Yuriy Mokrousov, Tatsuya Shishidou, and Arno Schindlmayr as well as financial support from the HGF Young Investigator Group Nanoferronics Laboratory and the Deutsche Forschungsgemeinschaft through the Priority Program 1145.

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IFF-1)
  2. Quanten-Theorie der Materialien (IAS-1)
  3. Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology (JARA-FIT)
  4. Jülich Aachen Research Alliance - High-Performance Computing (JARA-HPC)
Research Program(s):
  1. Grundlagen für zukünftige Informationstechnologien (P42)

Appears in the scientific report 2010
Database coverage:
American Physical Society Transfer of Copyright Agreement ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-FIT
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2012-11-13, last modified 2023-04-26