Journal Article FZJ-2023-02370

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The Electrodegradation Process in PZT Ceramics under Exposure to Cosmic Environmental Conditions

 ;  ;  ;  ;  ;  ;  ;

2023
MDPI Basel

Molecules 28(9), 3652 - () [10.3390/molecules28093652]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Long-time electric field action on perovskite piezoelectric ceramic leads to chemical degradation. A new way to accelerate the degradation is the exposure of the ceramic to DC electric fields under a vacuum. A high-quality commercial piezoelectric material based on PbZr1−xTixO3 is used to study such impacts. To avoid the influence of ferroelectric properties and possible removal of oxygen and lead oxides during the degradation process, the experiments are in the temperature interval of 500 °C > T > TC. Changes in resistance during the electrodegradation process is an electrically-induced deoxidation, transforming the ceramic into a metallic-like material. This occurs with an extremely low concentration of effused oxygen of 1016 oxygen atoms per 1 cm3. Due to this concentration not obeying the Mott criterion for an isolator-metal transition, it is stated that the removal of oxygen mostly occurs along the grain boundaries. It agrees with the first-principle calculations regarding dislocations with oxygen vacancies. The decrease in resistivity during electrodegradation follows a power law and is associated with a decrease in the dislocation dimension. The observed reoxidation process is a lifeline for the reconstructing (self-healing) properties of electro-degraded ceramics in harsh cosmic conditions. Based on all of these investigations, a macroscopic and nanoscopic model of the electrodegradation is presented.

Classification:

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-14)
  2. Quanten-Theorie der Materialien (PGI-1)
Research Program(s):
  1. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IET > IET-4
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-14
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-06-21, letzte Änderung am 2024-07-12


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)