Home > Publications database > Gamma Radiolysis of Phenyl-Substituted TODGAs: Part I |
Journal Article | FZJ-2023-02569 |
; ; ; ; ; ; ; ; ;
2023
Taylor & Francis
Philadelphia, PA
This record in other databases:
Please use a persistent id in citations: doi:10.1080/07366299.2023.2220765 doi:10.34734/FZJ-2023-02569
Abstract: The radiolytic stabilities of three phenylated analogs of N,N,N',N'-tetraoctyl diglycolamide (TODGA) were investigated: 2-(2-(di-n-octylamino)-2-oxoethoxy)-N,N-di-n-octyl-2-phenylacetamide (PhTODGA), which has a phenyl substituent bound to a central methylene, 2-(2-(di-n-octylamino)-2-oxo-1-phenylethoxy)-N,N-di-n-octylpropanamide (PhMeTODGA), which also contains a methyl substituent bound to the methylene on the other side of the ether moiety, and, 2-(2-N-n-hexyl-N-phenylamino)-2-oxoethoxy)-N-n-hexyl-N-phenylacetamide (DHDPDGA), which has phenyl substituents located on the amide groups instead of the central methylenes. The objective of Part I of this series of papers covers was to evaluate the contribution of the phenyl group to the radiolytic stability of these diglycolamides when irradiated in a) n-dodecane, and b) n-dodecane in the presence of a nitric acid-containing aqueous phase. The results indicate that the presence of the phenyl group decreases the overall radiolytic stability compared to unsubstituted TODGA. However, the results also indicate that the phenyl groups interact with nitric acid in a cooperative fashion that enhances the radiation stability of the phenylated diglycolamide (DGA) derivatives in the presence of a nitric acid-containing aqueous phase compared to irradiation in only n-dodecane. The results are consistent with the hypothesized formation of nitric acid-phenylated DGA complexes in the n-dodecane phase that are significantly more stable with respect to gamma irradiation, compared to the phenylated DGA molecules alone.
![]() |
The record appears in these collections: |