Journal Article FZJ-2023-02927

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
AI-based identification of therapeutic agents targeting GPCRs: introducing ligand type classifiers and systems biology

 ;  ;  ;  ;  ;  ;

2023
RSC Cambridge

Chemical science 14(32), 8651-8661 () [10.1039/D3SC02352D]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Identifying ligands targeting G protein coupled receptors (GPCRs) with novel chemotypes other than the physiological ligands is a challenge for in silico screening campaigns. Here we present an approach that identifies novel chemotype ligands by combining structural data with a random forest agonist/antagonist classifier and a signal-transduction kinetic model. As a test case, we apply this approach to identify novel antagonists of the human adenosine transmembrane receptor type 2A, an attractive target against Parkinson's disease and cancer. The identified antagonists were tested here in a radio ligand binding assay. Among those, we found a promising ligand whose chemotype differs significantly from all so-far reported antagonists, with a binding affinity of 310 ± 23.4 nM. Thus, our protocol emerges as a powerful approach to identify promising ligand candidates with novel chemotypes while preserving antagonistic potential and affinity in the nanomolar range

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
  3. Jülich Supercomputing Center (JSC)
  4. Nuklearchemie (INM-5)
Research Program(s):
  1. 5254 - Neuroscientific Data Analytics and AI (POF4-525) (POF4-525)
  2. 5252 - Brain Dysfunction and Plasticity (POF4-525) (POF4-525)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 5 ; JCR ; National-Konsortium ; PubMed Central ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-5
Institutssammlungen > INM > INM-9
Institutssammlungen > INM > INM-5
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-07-31, letzte Änderung am 2024-06-25


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)