Journal Article FZJ-2023-03737

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Predicting executive functioning from brain networks: modality specificity and age effects

 ;  ;  ;  ;  ;

2023
Oxford Univ. Press Oxford

Cerebral cortex 33(22), 10997–11009 () [10.1093/cercor/bhad338]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Healthy aging is associated with structural and functional network changes in the brain, which have been linked to deterioration in executive functioning (EF), while their neural implementation at the individual level remains unclear. As the biomarker potential of individual resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to what degree individual EF abilities can be predicted from the gray-matter volume (GMV), regional homogeneity, fractional amplitude of low-frequency fluctuations (fALFF), and RSFC within EF-related, perceptuo-motor, and whole-brain networks in young and old adults. We examined whether the differences in out-of-sample prediction accuracy were modality-specific and depended on age or task-demand levels. Both uni- and multivariate analysis frameworks revealed overall low prediction accuracies and moderate-to-weak brain–behavior associations (R2 < 0.07, r < 0.28), further challenging the idea of finding meaningful markers for individual EF performance with the metrics used. Regional GMV, well linked to overall atrophy, carried the strongest information about individual EF differences in older adults, whereas fALFF, measuring functional variability, did so for younger adults. Our study calls for future research analyzing more global properties of the brain, different task-states and applying adaptive behavioral testing to result in sensitive predictors for young and older adults, respectively.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 5251 - Multilevel Brain Organization and Variability (POF4-525) (POF4-525)

Appears in the scientific report 2023
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2023-10-09, last modified 2024-04-03


Published on 2023-09-29. Available in OpenAccess from 2024-09-29.:
Download fulltext PDF
(additional files)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)