Journal Article FZJ-2023-03781

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Cation-heterogeneity in internally gelated U$_{1-z}$Ce$_{z}$O$_{2-x}$, 0.15 ≤ $z$ ≤ 0.3 microspheres

 ;  ;  ;  ;  ;  ;  ;

2023
Elsevier Science Amsterdam

Journal of nuclear materials 587, 154749 - () [10.1016/j.jnucmat.2023.154749]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Internal gelation of aqueous mixtures of metal (M = Ln, An) nitrate with Uranyl Nitrate is generally assumed to yield cation homogeneity and a fluorite type single phase U1-zMzO2±x solid solution. As-sintered (U,Ce)O2 internally gelated microspheres, manufactured with target z values up to 0.3 using Ce(NO3)3, were observed to exhibit systematic peak broadening and splitting at higher 2θ angles in their X-Ray diffraction (XRD) patterns, correlating with increasing z≥0.15. This was interpreted as an unexpected departure from a single phase material. Thermogravimetry was used to make an initial assessment whether these peak anomalies were caused by an oxygen hypostoichiometry. Results indicated global oxygen stoichiometry for all compositions. The subsequent detailed characterization study via Electron Probe Micro Analysis of cross-sections of the as-sintered microspheres revealed the systematic presence of spherical Ce concentration gradients, as well as µm-sized highly Ce-enriched features. EDS and TEM studies on focused ion beam lamellae extracted from the cross-sections of as-sintered microspheres revealed a hexagonal Ce4.67(SiO4)3O minor phase manifesting as single grain precipitates and clusters uncovering the presence and critical role of Silicon as an unexpected contaminant and Ce-scavenger from surrounding (U,Ce)O2 grains. Characterization at intermediate heat treatment steps revealed that the systematic U/Ce heterogeneity features are already present post-gelation and are independent of the superimposed trace Ce-Si-O phase. This work constitutes the first systematic cation distribution study on cross-sections of (U,Ce)O2±x microspheres, executed on a series of compositions, using a combination of elemental mapping techniques.

Classification:

Contributing Institute(s):
  1. Nukleare Entsorgung (IEK-6)
Research Program(s):
  1. 1411 - Nuclear Waste Disposal (POF4-141) (POF4-141)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-2
Workflow collections > Public records
IEK > IEK-6
Publications database
Open Access

 Record created 2023-10-09, last modified 2024-07-08


Published on 2023-09-20. Available in OpenAccess from 2025-09-20.:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)