http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
DEEP LEARNING BASED PREDICTION OF SUN-INDUCED FLUORESCENCE FROM HYPLANT IMAGERY
Buffat, J. (Corresponding author)FZJ* ; Pato, M. ; Alonso, K. ; Auer, S. ; Carmona, E. ; Maier, S. ; Müller, R. ; Rademske, P.FZJ* ; Rascher, U.FZJ* ; Scharr, H.FZJ*
2023
IEEE
2023International Geoscience and Remote Sensing Symposium, PasadenaPasadena, USA, 21 Jun 2023 - 21 Jun 20232023-06-212023-06-21
IEEE 2993 - 2996 (2023) [10.1109/IGARSS52108.2023.10282828]2023
This record in other databases:
Please use a persistent id in citations: doi:10.1109/IGARSS52108.2023.10282828 doi:10.34734/FZJ-2023-04569
Abstract: The retrieval of sun-induced fluorescence (SIF) from hyper- spectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method com- bining semi-supervised deep learning with an existing spec- tral fitting method. A validation study with in-situ SIF mea- surements shows high sensitivity of the deep learning method to SIF changes even though systematic shifts deteriorate its absolute prediction accuracy. A detailed analysis of diurnal SIF dynamics and SIF prediction in topographically variable terrain highlights the benefits of this deep learning approach.
Note: This work is funded by the Helmholtz Initiative and Networking Fund, Helmholtz AI, Deutsches Zentrum für Luft- und Raumfahrt and Forschungszentrum Jülich GmbH. The authors gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the supercomputer JURECA [1] at Forschungszentrum Jülich.Jülch Supercomputing Centre, “JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülch Supercomputing Centre,” Journal of large-scale research facilities, vol. 7, no. A182, 2021. [Online]. Available: http://dx.doi.org/10.17815/jlsrf-7-182
Contributing Institute(s):
- Pflanzenwissenschaften (IBG-2)
- Datenanalyse und Maschinenlernen (IAS-8)
Research Program(s):
- 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)
- 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)
Appears in the scientific report
2023
Database coverage: