Contribution to a conference proceedings FZJ-2023-04569

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
DEEP LEARNING BASED PREDICTION OF SUN-INDUCED FLUORESCENCE FROM HYPLANT IMAGERY

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
IEEE

International Geoscience and Remote Sensing Symposium, PasadenaPasadena, USA, 21 Jun 2023 - 21 Jun 20232023-06-212023-06-21 IEEE 2993 - 2996 () [10.1109/IGARSS52108.2023.10282828]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: The retrieval of sun-induced fluorescence (SIF) from hyper- spectral imagery is an ill-posed problem that has been tackled in different ways. We present a novel retrieval method com- bining semi-supervised deep learning with an existing spec- tral fitting method. A validation study with in-situ SIF mea- surements shows high sensitivity of the deep learning method to SIF changes even though systematic shifts deteriorate its absolute prediction accuracy. A detailed analysis of diurnal SIF dynamics and SIF prediction in topographically variable terrain highlights the benefits of this deep learning approach.


Note: This work is funded by the Helmholtz Initiative and Networking Fund, Helmholtz AI, Deutsches Zentrum für Luft- und Raumfahrt and Forschungszentrum Jülich GmbH. The authors gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of the supercomputer JURECA [1] at Forschungszentrum Jülich.Jülch Supercomputing Centre, “JURECA: Data Centric and Booster Modules implementing the Modular Supercomputing Architecture at Jülch Supercomputing Centre,” Journal of large-scale research facilities, vol. 7, no. A182, 2021. [Online]. Available: http://dx.doi.org/10.17815/jlsrf-7-182

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
  2. Datenanalyse und Maschinenlernen (IAS-8)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)
  2. 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2023
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Ereignisse > Beiträge zu Proceedings
Institutssammlungen > IAS > IAS-8
Institutssammlungen > IBG > IBG-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2023-11-16, letzte Änderung am 2024-04-03


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)