Journal Article FZJ-2023-05834

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes

 ;  ;  ;  ;  ;

2023
Frontiers Research Foundation Lausanne

Frontiers in computational neuroscience 17, 1295395 () [10.3389/fncom.2023.1295395]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  3. DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)
  4. SLNS - SimLab Neuroscience (Helmholtz-SLNS) (Helmholtz-SLNS)

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2023-12-21, last modified 2024-02-26


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)