TypAmountVATCurrencyShareStatusCost centre
Hybrid-OA0.000.00EUR (Publish and Read)ZB
Sum0.000.00EUR   
Total0.00     
Journal Article FZJ-2024-00164

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
How Microstructures, Oxide Layers, and Charge Transfer Reactions influence Double Layer Capacitances

 ;  ;  ;  ;  ;  ;

2024
RSC Publ. Cambridge

Physical chemistry, chemical physics 26(19), 14288-14304 () [10.1039/D3CP04743A]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Varying the electrode potential rearranges the charges in the double layer (DL) of an electrochemical interface by a resistive-capacitive current response. The capacitances of such charge relocations are frequently used in the research community to estimate electrochemical active surface areas (ECSAs), yet the reliability of this methodology is insufficiently examined. Here, the relation of capacitances and ECSAs is critically assessed with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) data on polished (Au, Ti, Ru, Pt, Ni, glassy carbon, graphite plate) and porous (carbon fleeces) electrodes. By investigating this variety of electrodes, the frequency-dependencies observed in the measured capacitances are shown to arise from the inherent resistive-capacitive DL response, charge transfer reactions, and resistively damped capacitive currents in microstructures (such as pores, pinholes, or cracks). These frequency-dependencies are typically overlooked when capacitances are related to ECSAs. The capacitance at the specimen-characteristic relaxation frequency of the resistive-capacitive DL response is proposed as a standardized capacitance-metric to estimate ECSAs. In 1 M perchloric acid, the polished gold electrode and the high-surface area carbon fleeces show ratios of capacitance-metric over surface-area of around 3.7 µF/cm². Resistively damped currents in microstructures and low-conducting oxide layers are shown to complicate trustworthy capacitance-based estimations of ECSAs. In the second part of this study, advanced equivalent circuits models to describe the measured EIS and CV responses are presented.

Keyword(s): Others (1st)

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 1232 - Power-based Fuels and Chemicals (POF4-123) (POF4-123)

Appears in the scientific report 2024
Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-9
Publications database
Open Access

 Record created 2024-01-05, last modified 2025-02-04


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)