Journal Article FZJ-2024-01341

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Synthesis and Structural Characterization of Layered Ni$^{+1/+2}$ Oxides Obtained by Topotactic Oxygen Release on Nd$_{2−x}$Sr$_{x}$NiO$_{4−δ}$ Single Crystals

 ;  ;  ;  ;  ;

2023
MDPI Basel

Crystals 13(12), 1670 - () [10.3390/cryst13121670] special issue: "High Temperature Superconductor"

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Layered nickelate oxides containing Ni$^{1+}$/Ni$^{2+}$ are isoelectronic to Cu$^{2+}$/Cu$^{3+}$ compounds and of present interest with respect to recent findings of superconductivity in a series of different compositions. It is thereby questionable why superconductivity is still rare to find in nickelates, compared to the much larger amount of superconducting cuprates. Anisotropic $d_{z^2}$ vs. $d_{x^2−y^2}$ orbital occupation as well as interface-induced superconductivity are two of the main advanced arguments. We are here interested in investigating the feasibility of synthesizing layered nickelate-type oxides, where the Ni$^{1+}$/Ni$^{2+}$ ratio can be tuned by oxygen and/or cation doping. Our strategy is to synthesize Sr-doped $n$ = 1 Ruddlesden–Popper type Nd$_{2−x}$Sr$_x$NiO$_{4+δ}$ single crystals, which are then reduced by H$_2$ gas, forming Nd$_{2−x}$Sr$_x$NiO$_{4−δ}$ via a topotactic oxygen release at moderate temperatures. We report here on structural studies carried out on single crystals by laboratory and synchrotron diffraction using pixel detectors. We evidence the general possibility to obtain reduced single crystals despite their increased orthorhombicity. This must be regarded as a milestone to obtain single crystalline nickelate oxides, which further on contain charge-ordering of Ni$^{1+}$/Ni$^{2+}$, opening the access towards anisotropic properties.

Keyword(s): Chemical Reactions and Advanced Materials (1st) ; Crystallography (2nd) ; Chemistry (2nd) ; Condensed Matter Physics (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. JCNS-4 (JCNS-4)
  3. Streumethoden (JCNS-2)
  4. JARA-FIT (JARA-FIT)
  5. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)
  2. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. No specific instrument

Appears in the scientific report 2023
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > JCNS > JCNS-FRM-II
JARA > JARA > JARA-JARA\-FIT
Institutssammlungen > JCNS > JCNS-4
Institutssammlungen > JCNS > JCNS-2
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-01-31, letzte Änderung am 2024-03-11


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)