Journal Article FZJ-2024-02218

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
pyGOMoDo: GPCRs modeling and docking with python

 ;

2023
Oxford Univ. Press Oxford

Bioinformatics 39(5), btad294 () [10.1093/bioinformatics/btad294]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Motivation: We present pyGOMoDo, a Python library to perform homology modeling and docking, specifically designed for human GPCRs.pyGOMoDo is a python wrap-up of the updated functionalities of GOMoDo web server (https://molsim.sci.univr.it/gomodo). It was developedhaving in mind its usage through Jupyter notebooks, where users can create their own protocols of modeling and docking of GPCRs. In this article, we focus on the internal structure and general capabilities of pyGOMoDO and on how it can be useful for carrying out structural biology studies of GPCRs.Results: The source code is freely available at https://github.com/rribeiro-sci/pygomodo under the Apache 2.0 license. Tutorial notebooks containing minimal working examples can be found at https://github.com/rribeiro-sci/pygomodo/tree/main/examples.

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
Research Program(s):
  1. 5241 - Molecular Information Processing in Cellular Systems (POF4-524) (POF4-524)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-5
Institutssammlungen > INM > INM-9
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-04-03, letzte Änderung am 2025-02-03


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)