Journal Article FZJ-2024-03033

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Extracting binding energies and binding modes from biomolecular simulations of fragment binding to endothiapepsin

 ;  ;  ;  ;

2024
Wiley-VCH Weinheim

Archiv der Pharmazie 357(5), e2300612 () [10.1002/ardp.202300612]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Fragment-based drug discovery (FBDD) aims to discover a set of small binding fragments that may be subsequently linked together. Therefore, in-depth knowledge of the individual fragments' structural and energetic binding properties is essential. In addition to experimental techniques, the direct simulation of fragment binding by molecular dynamics (MD) simulations became popular to characterize fragment binding. However, former studies showed that long simulation times and high computational demands per fragment are needed, which limits applicability in FBDD. Here, we performed short, unbiased MD simulations of direct fragment binding to endothiapepsin, a well-characterized model system of pepsin-like aspartic proteases. To evaluate the strengths and limitations of short MD simulations for the structural and energetic characterization of fragment binding, we predicted the fragments' absolute free energies and binding poses based on the direct simulations of fragment binding and compared the predictions to experimental data. The predicted absolute free energies are in fair agreement with the experiment. Combining the MD data with binding mode predictions from molecular docking approaches helped to correctly identify the most promising fragments for further chemical optimization. Importantly, all computations and predictions were done within 5 days, suggesting that MD simulations may become a viable tool in FBDD projects.

Classification:

Contributing Institute(s):
  1. Bioinformatik (IBG-4)
  2. Jülich Supercomputing Center (JSC)
  3. John von Neumann - Institut für Computing (NIC)
  4. Strukturbiochemie (IBI-7)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  2. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)
  3. GRK 2158 - GRK 2158: Naturstoffe und Analoga gegen Therapie-resistente Tumoren und Mikroorganismen: Neue Leitstrukturen und Wirkmechanismen (270650915) (270650915)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DEAL Wiley ; Essential Science Indicators ; IF >= 5 ; Index Chemicus ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBI > IBI-7
Institutssammlungen > IBG > IBG-4
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access
NIC

 Datensatz erzeugt am 2024-04-22, letzte Änderung am 2025-02-04


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)