Home > Publications database > Mobility of sodium ions in agarose gels probed through combined single- and triple-quantum NMR |
Journal Article | FZJ-2024-03470 |
; ;
2024
Academic Press
Orlando, Fla.
This record in other databases:
Please use a persistent id in citations: doi:10.1016/j.ymeth.2024.05.015 doi:10.34734/FZJ-2024-03470
Abstract: Metal ions, including biologically prevalent sodium ions, can modulate electrostatic interactions frequently involved in the stability of condensed compartments in cells. Quantitative characterization of heterogeneous ion dynamics inside biomolecular condensates demands new experimental approaches. Here we develop a 23Na NMR relaxation-based integrative approach to probe dynamics of sodium ions inside agarose gels as a model system. We exploit the electric quadrupole moment of spin-3/2 23Na nuclei and, through combination of single-quantum and triple-quantum-filtered 23Na NMR relaxation methods, disentangle the relaxation contribution of different populations of sodium ions inside gels. Three populations of sodium ions are identified: a population with biexponential relaxation representing ions within the slow motion regime and wo populations with monoexponential relaxation but at different rates. Our study demonstrates the dynamical heterogeneity of sodium ions inside agarose gels and presents a new experimental approach for monitoring dynamics of sodium and other spin-3/2 ions (e.g. chloride) in condensed environments.
![]() |
The record appears in these collections: |