Book/Dissertation / PhD Thesis FZJ-2024-04610

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Artificial Intelligence Framework for Video Analytics: Detecting Pushing in Crowds



2024
Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich
ISBN: 978-3-95806-763-9

Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich IAS Series 61, xviii, 151 () [10.34734/FZJ-2024-04610] = Dissertation, Univ. Wuppertal, 2024

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: In the modern era, data has become more complex, posing additional challenges to conventional data analysis methods. This is where Artificial Intelligence comes into play, specifically Deep Learning algorithms. These algorithms can analyze such data automatically, quickly, and accurately. Moreover, they can explore complex relationships between variables and identify non-linear patterns humans may not perceive. Leveraging this potential, Deep Learning has recently become pivotal in analyzing complex data, such as video data, arising from human crowds to enhance safety. Despite considerable advancements, some challenging problems in crowd dynamics still need to be solved efficiently and automatically.


Note: Dissertation, Univ. Wuppertal, 2024

Contributing Institute(s):
  1. Zivile Sicherheitsforschung (IAS-7)
Research Program(s):
  1. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)

Appears in the scientific report 2024
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Hochschulschriften > Doktorarbeiten
Institutssammlungen > IAS > IAS-7
Dokumenttypen > Bücher > Bücher
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-07-01, letzte Änderung am 2024-07-16


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)