Journal Article FZJ-2024-04649

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Benefits and limits of biological nitrification inhibitors for plant nitrogen uptake and the environment

 ;

2024
Nature Research, part of Springer Nature [London]

Scientific reports 14, 15027 () [10.1038/s41598-024-65247-2]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 2171 - Biological and environmental resources for sustainable use (POF4-217) (POF4-217)
  2. DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)
  3. Root2Res - Root2Resilience: Root phenotyping and genetic improvement for rotational crops resilient to environmental change (101060124) (101060124)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2024-07-02, last modified 2025-02-04


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)