Conference Presentation (After Call) FZJ-2024-05123

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Reactive Field Assisted Sintering (FAST/SPS) of various garnets for plasma etching applications

 ;  ;  ;  ;  ;

2023

XVIIIth Conference of the European Ceramic Society, ECERS2023, LyonLyon, France, 2 Jul 2023 - 6 Jul 20232023-07-022023-07-06 [10.34734/FZJ-2024-05123]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Plasma etching is a crucial step in semiconductor manufacturing. When the plasma is applied on the wafer, chamber cleanliness and reproducibility of the etching process are essential. The trend towards more aggressive etching environments requires advanced chamber components with excellent plasma resistance in the etching chamber. To tackle this issue, there is an increasing interest of better understanding the specific erosion mechanisms of etch resistant ceramics. At the current state of development, Yttrium-Aluminum-Garnet (YAG) shows promise in highly aggressive etching environments. In this study, we present a novel approach to manufacture highly dense YAG ceramics by means of reactive field assisted sintering technology/ spark plasma sintering (reactive FAST/SPS) of the respective oxides. FAST/SPS offers several advantages over conventional sintering techniques, e.g. shorter processing times, energy and cost efficiency as well as consolidation close to the theoretical density. To better understand the plasma resistance of YAG alternative lanthanides (Lu, Yb, Er) aluminates were created to identify the influence of the lanthanide atom in the YAG type structure on the plasma-material response. For applied characterization, samples were exposed to fluorine based etching plasmas (CF4/O2) using an inductively coupled plasma (ICP) etch chamber. The resulting topography and induced chemical reactions were characterized by atomic force microscopy (AFM) and secondary in mass spectrometry (SIMS) respectively.


Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Materialwissenschaft u. Werkstofftechnik (ER-C-2)
  3. Grundlagen der Elektrochemie (IEK-9)
  4. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)
  2. DFG project 274005202 - SPP 1959: Manipulation of matter controlled by electric and magnetic fields: Towards novel synthesis and processing routes of inorganic materials (274005202) (274005202)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Konferenzvorträge
JARA > JARA > JARA-JARA\-ENERGY
Institutssammlungen > ER-C > ER-C-2
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-9
IEK > IEK-1
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-08-01, letzte Änderung am 2025-02-03


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)