Journal Article FZJ-2024-05234

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Linking network- and neuron-level correlations by renormalized field theory

 ;  ;

2024
APS College Park, MD

Physical review research 6(3), 033264 () [10.1103/PhysRevResearch.6.033264]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: It is frequently hypothesized that cortical networks operate close to a critical point. Advantages of criticality include rich dynamics well suited for computation and critical slowing down, which may offer a mechanism for dynamic memory. However, mean-field approximations, while versatile and popular, inherently neglect the fluctuations responsible for such critical dynamics. Thus, a renormalized theory is necessary. We consider the Sompolinsky-Crisanti-Sommers model which displays a well studied chaotic as well as a magnetic transition. Based on the analog of a quantum effective action, we derive self-consistency equations for the first two renormalized Greens functions. Their self-consistent solution reveals a coupling between the population level activity and single neuron heterogeneity. The quantitative theory explains the population autocorrelation function, the single-unit autocorrelation function with its multiple temporal scales, and cross correlations.

Classification:

Contributing Institute(s):
  1. Computational and Systems Neuroscience (IAS-6)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. Computational and Systems Neuroscience (INM-6)
Research Program(s):
  1. 5232 - Computational Principles (POF4-523) (POF4-523)
  2. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)
  3. RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) (BMBF-01IS19077A)
  4. DFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-6
Institutssammlungen > INM > INM-6
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
Workflowsammlungen > Publikationsgebühren
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-08-19, letzte Änderung am 2025-02-03


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)