Conference Presentation (Invited) FZJ-2024-05827

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Prediction of the magnetic exchange interaction in doped topological insulators

 ;  ;  ;  ;

2024

Machine Learning of First Principles Observables, mlfpo24, RWTH AachenBerlin, RWTH Aachen, Germany, 8 Jul 2024 - 12 Jul 20242024-07-082024-07-12 [10.34734/FZJ-2024-05827]

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: We present a benchmark study of surrogate models for impurities embedded into crystalline solids. Using the Korringa-Kohn-Rostoker Green Function method and the AiiDA workflow engine [1], we have built a database of magnetic transition metal impurity dimers embedded in the topological insulator Bi2Te3. We predict isotropic exchange interaction of the impurity dimer in the classical Heisenberg model with machine learning and then use these surrogates as input for spin dynamics calculations to find the magnetic ground state of the material [2]. The study compares various recent E(3)-equivariant models such as ACE and MACE [3] in terms of performance and reproducible end-to-end workflows.References.[1] P. Rüßmann, F. Bertoldo, S. Blügel, npj. Comput. Mater., 7, 13 (2021)[2] P. Rüßmann, J. Ribas Sobreviela, M. Sallermann, M. Hoffmann, F. Rhiem, S. Blügel, Front. Mater., 9, (2022)[3] Batatia, I., Kovács, D. P., Simm, G. N. C., Ortner, C. & Csányi, G. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Preprint (2022).

Keyword(s): Magnetic Materials (1st) ; Magnetism (2nd)


Contributing Institute(s):
  1. Quanten-Theorie der Materialien (PGI-1)
Research Program(s):
  1. 5211 - Topological Matter (POF4-521) (POF4-521)
  2. 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) (POF4-511)
  3. AIDAS - Joint Virtual Laboratory for AI, Data Analytics and Scalable Simulation (aidas_20200731) (aidas_20200731)
  4. HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) (HDS-LEE-20190612)
  5. DFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769) (390534769)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Konferenzvorträge
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-10-13, letzte Änderung am 2025-04-01


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)