Journal Article FZJ-2024-05899

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Spruce and pine utilization of phosphorus in soil amended with 33 P ‐labelled hydroxylapatite

 ;  ;  ;  ;

2024
Wiley-Blackwell Oxford [u.a.]

European journal of soil science 75(5), e13587 () [10.1111/ejss.13587]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: Mined rock phosphate is expected to become a scarce resource within the next few decades as global phosphorus (P) deposits are declining. As a result, mineral P fertilizer will be less available and more expensive. Therefore, improved knowledge is needed on other P resources, for example, apatite fertilizers derived from the by-products of iron mining. Forestry is a potential future consumer of apatite-rich products with the aim of obtaining more wood per hectare. The actual P availability in apatite to plants has so far been barely quantified. We therefore examined tree P uptake using 33P apatite under chamber-grown and outdoor conditions. We examined the P uptake for the two main conifer species spruce (Picea abies) and pine (Pinus sylvestris) used in Fenno-Scandinavian forestry. We synthesized 33P-enriched apatite and applied it to mesocosms with growing seedlings of spruce and pine. The P uptake from 33P-labelled hydroxylapatite was subsequently traced by (bio)imaging of radioactivity in the plants and by liquid scintillation counting (LSC) upon destructive harvest in all plant fractions (leaves, stem and roots) and rhizosphere soil. Two climatic conditions were compared, one at natural outdoor conditions and one set as 5°C warmer than the climate record from the previous years. Plant P uptake from 33P-labelled hydroxylapatite was enhanced in chamber-grown compared with outdoor seedlings for both tree species. This uptake was manifested in the clear radioactive images obtained over ca. 1 month after soil apatite application. Furthermore, all aboveground plant fractions of both spruce and pine seedlings showed a higher P uptake in warmer than colder daytime environments. The observed quantities and rates of P uptake from 33P-labelled hydroxylapatite by spruce (18 Bq g−1 hour−1) and pine (83 Bq g−1 hour−1; averages in chamber condition) are as to our knowledge unique observations. Natural forest soils in Sweden are often P-poor. Our research suggests that apatite-based P fertilization of spruce and pine forests can increase wood production by overcoming any existing P limitation.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) (POF4-217)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2024-10-21, letzte Änderung am 2025-02-03


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)