TypAmountVATCurrencyShareStatusCost centre
Hybrid-OA0.000.00EUR (DEAL)ZB
Sum0.000.00EUR   
Total0.00     
Journal Article FZJ-2024-07066

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
An assessment of electroneutrality implementations for accurate electrochemical ion transport models

 ;  ;  ;

2024
Elsevier New York, NY [u.a.]

Electrochimica acta 508, 145280 - () [10.1016/j.electacta.2024.145280]

This record in other databases:    

Please use a persistent id in citations: doi:  doi:

Abstract: During the diffusion and migration of ions in electrolytes, the electrodynamic ion-ion interactions prevent charge separation despite different ionic mobilities, ultimately enforcing electroneutrality in the bulk electrolyte. To model ion transport accurately, a method to enforce electroneutrality must be implemented. In this study, four strategies to implement electroneutrality are discussed and evaluated. The ion distributions that result from a transport model with the different electroneutrality implementations are calculated, considering various electrolytes and sets of electrochemical parameters. The meaningfulness and applicability of each implementation are assessed through spatial charge accumulations, transference numbers, and experimental data from the literature. Combining the electrochemical ion transport models with the electroneutrality constraint for all ions is shown to result in an overdetermined system of equations if the driving forces are calculated under neglection of diffusion potentials. The often-reported model simplification of using the electroneutrality constraint to resolve the transport of one specific species explicitly results in non-physically correct mass transport. A practical approach to precisely describe the measured physicochemical ion movements is obtained by equilibrating spatial charges with the ion conduction for every time step in the ion transport model, which is reasonably applicable to multi-ion systems in three-dimensional frameworks. This comprehensive assessment aims to guide readers in selecting an appropriate electroneutrality implementation framework for ion transport models.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IET-1)
Research Program(s):
  1. 1231 - Electrochemistry for Hydrogen (POF4-123) (POF4-123)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2024-12-13, last modified 2025-02-03


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)