Journal Article FZJ-2025-00096

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Molecular Insights into the Interfacial Phenomena at the Li Metal | Polymer Solid‐State Electrolyte in Anode‐Free Configuration During Li Plating‐Stripping via Advanced Operando ATR‐FTIR Spectroscopy

 ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Advanced energy materials 15(8), 2404569 () [10.1002/aenm.202404569]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Solid-state batteries are regarded as safe and high-energy-density candidates for next-generation energy storage. However, gaining a mechanistic understanding of the interfacial phenomena under real electrochemically working conditions remains a major challenge for cells containing solid-state electrolytes. This work presents an in-house built attenuated total reflection fourier-transform infrared (ATR-FTIR) spectroscopy cell equipped with an internal temperature-control unit. This cell is used for operando characterization of interfacial processes between plated Li and polymer during Li plating/stripping. As a proof of concept, a polymer electrolyte (cr-PEO10LiTFSI) containing poly(ethylene oxide), Li bis-(trifluoromethanesulfonyl)imide and crosslink-initiator benzophenone (BP) is introduced on a copper mesh as current collector at 60 °C. The developed ATR-FTIR spectroscopy setup provides detailed insights into the electrolyte degradation and reveals the crystallinity transformation of PEO at the interface during plating. Moreover, for the first time, the degradation of BP is observed. This compound, often overlooked in electrolyte systems due to its low concentration, is found to play a significant role in the interfacial electrochemistry process. Overall, this study provides a comprehensive overview of the characterization on the PEO electrolyte-lithium metal interface and introduces a novel perspective on the reaction of BP as a crosslinking initiator in the solid-state batteries.

Classification:

Note: German Federal Ministry for Education and Research within the project “EFoBatt” (grant number 13XP5129)

Contributing Institute(s):
  1. Helmholtz-Institut Münster Ionenleiter für Energiespeicher (IMD-4)
Research Program(s):
  1. 1221 - Fundamentals and Materials (POF4-122) (POF4-122)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 25 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-4
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2025-01-06, last modified 2025-06-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)