Preprint FZJ-2025-01111

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Gain Cell-Based Analog Content Addressable Memory for Dynamic Associative tasks in AI

 ;  ;  ;

2024
arXiv

arXiv () [10.48550/arXiv.2410.09755]

This record in other databases:

Please use a persistent id in citations: doi:  doi:  doi:

Abstract: Analog Content Addressable Memories (aCAMs) have proven useful for associative in-memory computing applications like Decision Trees, Finite State Machines, and Hyper-dimensional Computing. While non-volatile implementations using FeFETs and ReRAM devices offer speed, power, and area advantages, they suffer from slow write speeds and limited write cycles, making them less suitable for computations involving fully dynamic data patterns. To address these limitations, in this work, we propose a capacitor gain cell-based aCAM designed for dynamic processing, where frequent memory updates are required. Our system compares analog input voltages to boundaries stored in capacitors, enabling efficient dynamic tasks. We demonstrate the application of aCAM within transformer attention mechanisms by replacing the softmax-scaled dot-product similarity with aCAM similarity, achieving competitive results. Circuit simulations on a TSMC 28 nm node show promising performance in terms of energy efficiency, precision, and latency, making it well-suited for fast, dynamic AI applications.

Keyword(s): Emerging Technologies (cs.ET) ; FOS: Computer and information sciences


Contributing Institute(s):
  1. Neuromorphic Compute Nodes (PGI-14)
  2. Neuromorphic Software Eco System (PGI-15)
Research Program(s):
  1. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  2. BMBF 16ME0400 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (16ME0400) (16ME0400)

Appears in the scientific report 2024
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Berichte > Vorabdrucke
Institutssammlungen > PGI > PGI-15
Institutssammlungen > PGI > PGI-14
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-01-24, letzte Änderung am 2025-02-03


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)