Journal Article FZJ-2025-01280

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
PNIPAM Mesoglobules in Dependence on Pressure

 ;  ;  ;  ;  ;  ;  ;

2024
ACS Publ. Washington, DC

Langmuir 40(42), 22314 - 22323 () [10.1021/acs.langmuir.4c02952]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Poly(N-isopropylacrylamide) (PNIPAM) in aqueous solution forms mesoglobules above its cloud point temperature Tcp. While these are small and compact at atmospheric pressure, they are large and water-rich at high pressure. To identify the transition between these states, we employed optical microscopy and carried out isothermal pressure scans. Using very small angle neutron scattering, we determined the size and water content of the mesoglobules in pressure scans at different temperatures above Tcp. We observe a distinct transition at pressures of 35–55 MPa with the transition pressure depending on temperature. While the transition is smooth at high temperatures, i.e., far away from the coexistence line, it is abrupt at low temperatures, i.e., close to the coexistence line. Hence, at high temperatures, the swelling of the mesoglobules dominates, whereas at low temperatures, the coalescence of mesoglobules prevails. Subsequently decreasing the pressure results in a gradual deswelling of the mesoglobules at high temperature. In contrast, at low temperatures, small and compact mesoglobules form, but the large aggregates persist. We conclude that, on the time scale of the experiment, the disintegration of the large swollen aggregates into small and compact mesoglobules is only partially possible. Erasing the history by cooling the sample at the maximum pressure into the one-phase state does not result in qualitative changes for the behavior with the only difference that Fewer mesoglobules are formed when the pressure is decreased again. The newly identified transition line separates the low-pressure from the high-pressure regime.

Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. Neutronenstreuung (JCNS-1)
  2. JCNS-4 (JCNS-4)
  3. Heinz Maier-Leibnitz Zentrum (MLZ)
  4. JCNS-FRM-II (JCNS-FRM-II)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) (POF4-6G4)
  2. 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) (POF4-632)
Experiment(s):
  1. KWS-3: Very small angle scattering diffractometer with focusing mirror (NL3auS)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-4
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-01-28, last modified 2025-03-10


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)