Journal Article FZJ-2025-01332

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Computing high-degree polynomial gradients in memory

 ;  ;  ;  ;  ;  ;  ;  ;

2024
Springer Nature [London]

Nature Communications 15(1), 8211 (2024) () [10.1038/S41467-024-52488-Y]

This record in other databases:      

Please use a persistent id in citations: doi:  doi:

Abstract: Specialized function gradient computing hardware could greatly improve the performance of state-of-the-art optimization algorithms. Prior work on such hardware, performed in the context of Ising Machines and related concepts, is limited to quadratic polynomials and not scalable to commonly used higher-order functions. Here, we propose an approach for massively parallel gradient calculations of high-degree polynomials, which is conducive to efficient mixed-signal in-memory computing circuit implementations and whose area scales proportionally with the product of the number of variables and terms in the function and, most importantly, independent of its degree. Two flavors of such an approach are proposed. The first is limited to binary-variable polynomials typical in combinatorial optimization problems, while the second type is broader at the cost of a more complex periphery. To validate the former approach, we experimentally demonstrated solving a small-scale third-order Boolean satisfiability problem based on integrated metal-oxide memristor crossbar circuits, with competitive heuristics algorithm. Simulation results for larger-scale, more practical problems show orders of magnitude improvements in area, speed and energy efficiency compared to the state-of-the-art. We discuss how our work could enable even higher-performance systems after co-designing algorithms to exploit massively parallel gradient computation.

Classification:

Contributing Institute(s):
  1. Neuromorphic Compute Nodes (PGI-14)
Research Program(s):
  1. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  2. 5232 - Computational Principles (POF4-523) (POF4-523)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-14
Workflow collections > Public records
Publications database
Open Access

 Record created 2025-01-29, last modified 2025-02-07


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)