Journal Article FZJ-2025-03081

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Sample-efficient reinforcement learning of Koopman eNMPC

 ;  ;  ;

2025
Elsevier Science Amsterdam [u.a.]

Computers & chemical engineering 201, 109240 - () [10.1016/j.compchemeng.2025.109240]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Classification:

Contributing Institute(s):
  1. Modellierung von Energiesystemen (ICE-1)
Research Program(s):
  1. 1121 - Digitalization and Systems Technology for Flexibility Solutions (POF4-112) (POF4-112)
  2. HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) (HDS-LEE-20190612)
  3. DFG project G:(GEPRIS)466656378 - Dateneffizientes und physikinformiertes Verstärkungslernen zur Regelung von flüssig-flüssig Trennprozessen (466656378) (466656378)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2025-07-15, last modified 2025-08-04


OpenAccess:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)