Journal Article FZJ-2025-04115

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enhanced crack stability in micro scale fracture testing via optimized bridge notches

 ;  ;  ;  ;  ;  ;

2025
Elsevier Amsterdam

Materials science & engineering / A 939, 148479 - () [10.1016/j.msea.2025.148479]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: In micro cantilever fracture, a bridge notch geometry with material ligaments at the notch ends helps to reduce focused ion beam artefacts near the notch root by arresting initial cracks and promoting fracture from sharp, natural cracks. Thus, it significantly reduces the statistical scatter in fracture toughness, a common but undesirable feature in micro fracture testing. Although this concept has been validated in simulations and experiments, systematic investigations into the optimal geometry remain lacking. In this study, we experimentally examine the influence of bridge width and notch depth on the fracture toughness of micro cantilevers, using single crystalline silicon as a model material. We found that samples with thinner material bridges and deeper notches exhibit crack arrest before failure, while those with thicker bridges do not show crack arrest instead exhibit apparent toughening. Cantilevers with an optimized bridge notch geometry for crack arrest exhibit a KIC of 1.09 ± 0.02 MPa m0.5, which agrees with previously reported fracture toughness for the Si (111) surface. Additionally, discrepancies between the bridge geometry in the experiment and the ideal structure resulted in a mismatch between the predicted and observed notch requirements for crack arrest. Our findings offer practical guidelines for designing bridge notch geometries to promote bridge failure, thus improving statistical analysis in micro fracture.

Classification:

Contributing Institute(s):
  1. Werkstoffstruktur und -eigenschaften (IMD-1)
Research Program(s):
  1. 1241 - Gas turbines (POF4-124) (POF4-124)

Database coverage:
Medline ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IMD > IMD-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-10-12, letzte Änderung am 2026-01-06


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)