Preprint FZJ-2025-04589

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Giant orbital Zeeman effects in a magnetic topological van der Waals interphase

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
arXiv

arXiv () [10.48550/ARXIV.2510.26662]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: Van der Waals (vdW) heterostructures allow the engineering of electronic and magnetic properties by the stacking different two-dimensional vdW materials. For example, orbital hybridisation and charge transfer at a vdW interface may result in electric fields across the interface that give rise to Rashba spin-orbit coupling. In magnetic vdW heterostructures, this in turn can drive the Dzyaloshinskii-Moriya interaction which leads to a canting of local magnetic moments at the vdW interface and may thus stabilise novel 2D magnetic phases. While such emergent magnetic 'interphases' offer a promising platform for spin-based electronics, direct spectroscopic evidence for them is still lacking. Here, we report Zeeman effects with Landé $g$-factors up to $\approx230$ at the interface of graphene and the vdW ferromagnet Fe$_3$GeTe$_2$. They arise from a magnetic interphase in which local-moment canting and itinerant orbital moments generated by the non-trivial band topology of Fe$_3$GeTe$_2$ conspire to cause a giant asymmetric level splitting when a magnetic field is applied. Exploiting the inelastic phonon gap of graphene, we can directly access the buried vdW interface to the Fe$_3$GeTe$_2$ by scanning tunnelling spectroscopy. Systematically analyzing the Faraday-like screening of the tip electric field by the graphene, we demonstrate the tunability of the constitutional interface dipole, as well as the Zeeman effect, by tip gating. Our findings are supported by density functional theory and electrostatic modelling.

Keyword(s): Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ; FOS: Physical sciences


Note: Bitte Postprint ergänzen

Contributing Institute(s):
  1. Quantum Nanoscience (PGI-3)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. Elektronische Eigenschaften (PGI-6)
Research Program(s):
  1. 5213 - Quantum Nanoscience (POF4-521) (POF4-521)
  2. DFG project G:(GEPRIS)443416235 - 1D topologische Supraleitung und Majorana Zustände in van der Waals Heterostrukturen charakterisiert durch Rastersondenmikroskopie (443416235) (443416235)
  3. DFG project G:(GEPRIS)422707584 - SPP 2244: 2D Materialien – die Physik von van der Waals [Hetero-]Strukturen (2DMP) (422707584) (422707584)
  4. DFG project G:(GEPRIS)422213477 - TRR 288: Elastisches Tuning und elastische Reaktion elektronischer Quantenphasen der Materie (ELASTO-Q-MAT) (422213477) (422213477)
  5. EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769) (390534769)

Appears in the scientific report 2025
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Berichte > Vorabdrucke
Institutssammlungen > PGI > PGI-6
Institutssammlungen > PGI > PGI-3
Institutssammlungen > PGI > PGI-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2025-11-21, letzte Änderung am 2025-11-25


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenVolltext
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)