Journal Article FZJ-2026-00448

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A simplified model of NMDA-receptor-mediated dynamics in leaky integrate-and-fire neurons

 ;  ;

2025
Springer Science + Business Media B.V Dordrecht [u.a.]

Journal of computational neuroscience 53, 475-487 () [10.1007/s10827-025-00911-8]

This record in other databases:  

Please use a persistent id in citations: doi:  doi:

Abstract: A model for NMDA-receptor-mediated synaptic currents in leaky integrate-and-fire neurons, first proposed by Wang (J Neurosci, 1999), has been widely studied in computational neuroscience. The model features a fast rise in the NMDA conductance upon spikes in a pre-synaptic neuron followed by a slow decay. In a general implementation of this model which allows for arbitrary network connectivity and delay distributions, the summed NMDA current from all neurons in a pre-synaptic population cannot be simulated in aggregated form. Simulating each synapse separately is prohibitively slow for all but small networks, which has largely limited the use of the model to fully connected networks with identical delays, for which an efficient simulation scheme exists. We propose an approximation to the original model that can be efficiently simulated for arbitrary network connectivity and delay distributions. Our results demonstrate that the approximation incurs minimal error and preserves network dynamics. We further use the approximate model to explore binary decision making in sparsely coupled networks.

Classification:

Contributing Institute(s):
  1. Computational and Systems Neuroscience (IAS-6)
Research Program(s):
  1. 5231 - Neuroscientific Foundations (POF4-523) (POF4-523)
  2. 5232 - Computational Principles (POF4-523) (POF4-523)
  3. 5234 - Emerging NC Architectures (POF4-523) (POF4-523)
  4. 5235 - Digitization of Neuroscience and User-Community Building (POF4-523) (POF4-523)
  5. HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) (945539)

Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DEAL Springer ; Essential Science Indicators ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IAS > IAS-6
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2026-01-15, letzte Änderung am 2026-01-15


OpenAccess:
Volltext herunterladen PDF
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)