Home > Publications database > Polymer enrichment decelerates surfactant membranes near interfaces |
Journal Article | FZJ-2014-02996 |
; ; ; ; ; ;
2014
APS
College Park, Md.
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/6739 doi:10.1103/PhysRevE.89.042303
Abstract: Close to a planar surface, lamellar structures are imposed upon otherwise bulk bicontinuous microemulsions. Thermally induced membrane undulations are modified by the presence of the rigid interface. While it has been shown that a pure membrane's dynamics are accelerated close to the interface, we observed nearly unchanged relaxation rates for membranes spiked with large amphiphilic diblock copolymers. An increase of the polymer concentration by a factor of 2–3 for the first and second surfactant membrane layers was observed. We interpret the reduced relaxation times as the result of an interplay between the bending rigidity and the characteristic distance of the first surfactant membrane to the rigid interface, which causes the hydrodynamic and steric interface effects described in Seifert's theory. The influence of these effects on decorated membranes yields a reduction of the frequencies and an amplification of the amplitudes of long-wavelength undulations, which are in accordance to our experimental findings
Keyword(s): Polymers, Soft Nano Particles and Proteins (1st) ; Key Technologies (1st) ; Soft Matter, Macromolecules, Complex fluids, Biophysics (1st) ; Soft Condensed Matter (2nd)
![]() |
The record appears in these collections: |