Journal Article FZJ-2014-03056

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Homeostatic structural plasticity increases the efficiency of small-world networks

 ;  ;

2014
Frontiers Research Foundation Lausanne

Frontiers in synaptic neuroscience 6(7), 14 () [10.3389/fnsyn.2014.00007]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: In networks with small-world topology, which are characterized by a high clustering coefficient and a short characteristic path length, information can be transmitted efficiently and at relatively low costs. The brain is composed of small-world networks, and evolution may have optimized brain connectivity for efficient information processing. Despite many studies on the impact of topology on information processing in neuronal networks, little is known about the development of network topology and the emergence of efficient small-world networks. We investigated how a simple growth process that favors short-range connections over long-range connections in combination with a synapse formation rule that generates homeostasis in post-synaptic firing rates shapes neuronal network topology. Interestingly, we found that small-world networks benefited from homeostasis by an increase in efficiency, defined as the averaged inverse of the shortest paths through the network. Efficiency particularly increased as small-world networks approached the desired level of electrical activity. Ultimately, homeostatic small-world networks became almost as efficient as random networks. The increase in efficiency was caused by the emergent property of the homeostatic growth process that neurons started forming more long-range connections, albeit at a low rate, when their electrical activity was close to the homeostatic set-point. Although global network topology continued to change when neuronal activities were around the homeostatic equilibrium, the small-world property of the network was maintained over the entire course of development. Our results may help understand how complex systems such as the brain could set up an efficient network topology in a self-organizing manner. Insights from our work may also lead to novel techniques for constructing large-scale neuronal networks by self-organization.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 411 - Computational Science and Mathematical Methods (POF2-411) (POF2-411)
  2. SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) (HGF-SMHB-2013-2017)
  3. SLNS - SimLab Neuroscience (Helmholtz-SLNS) (Helmholtz-SLNS)

Appears in the scientific report 2014
Database coverage:
Medline ; DOAJ ; OpenAccess ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2014-05-07, last modified 2022-09-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)