Journal Article FZJ-2014-03388

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Deformation and dynamics of red blood cells in flow through cylindrical microchannels

 ;  ;

2014
Royal Society of Chemistry (RSC) Cambridge

Soft matter 10(24), 4258 - 4267 () [10.1039/c4sm00248b]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes, slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl–von Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would affect the shape diagram

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (IAS-2)
  2. Theorie der Weichen Materie und Biophysik (ICS-2)
Research Program(s):
  1. 451 - Soft Matter Composites (POF2-451) (POF2-451)

Appears in the scientific report 2014
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Allianz-Lizenz / DFG ; Current Contents - Social and Behavioral Sciences ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
ICS > ICS-2
Publications database
Open Access

 Record created 2014-06-04, last modified 2024-06-10