Journal Article FZJ-2014-04651

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Finite-size versus interface-proximity effects in thin-film epitaxial $SrTiO_3$

 ;  ;  ;

2014
APS College Park, Md.

Physical review / B 89(24), 241401 () [10.1103/PhysRevB.89.241401]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: The equilibrium electrical conductivity of epitaxial SrTiO3 (STO) thin films was investigated as a function of temperature, 950≤ T/K ≤1100, and oxygen partial pressure, 10−23≤ pO2/bar ≤1. Compared with single-crystal STO, nanoscale thin-film STO exhibited with decreasing film thickness an increasingly enhanced electronic conductivity under highly reducing conditions, with a corresponding decrease in the activation enthalpy of conduction. This implies substantial modification of STO's point-defect thermodynamics for nanoscale film thicknesses. We argue, however, against such a finite-size effect and for an interface-proximity effect. Indeed, assuming trapping of oxygen vacancies at the STO surface and concomitant depletion of oxygen vacancies—and accumulation of electrons—in an equilibrium surface space-charge layer, we are able to predict quantitatively the conductivity as a function of temperature, oxygen partial pressure, and film thickness. Particularly complex behavior is predicted for ultrathin films that are consumed entirely by space charge.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
Research Program(s):
  1. 424 - Exploratory materials and phenomena (POF2-424) (POF2-424)

Appears in the scientific report 2014
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Social and Behavioral Sciences ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database
Open Access

 Record created 2014-08-26, last modified 2023-04-26


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)