Journal Article FZJ-2014-04734

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2014
EGU Katlenburg-Lindau

Atmospheric chemistry and physics 14, 6941 - 6952 () [10.5194/acp-14-6941-2014]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1–0.2 ppb) and high-NO conditions (typically 7–8 ppb), and starting concentrations of 6–250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied in which OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH/POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH/POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1–1.6 under low-NO conditions and 0.9–1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

Classification:

Contributing Institute(s):
  1. Troposphäre (IEK-8)
Research Program(s):
  1. 233 - Trace gas and aerosol processes in the troposphere (POF2-233) (POF2-233)

Appears in the scientific report 2014
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; Current Contents - Social and Behavioral Sciences ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-3
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-8
Publications database
Open Access

 Record created 2014-09-01, last modified 2024-07-12


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)