Journal Article FZJ-2015-00148

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Magnetically Assisted Fast Ignition

 ;  ;  ;

2015
APS College Park, Md.

Physical review letters 114(1), 015001 () [10.1103/PhysRevLett.114.015001]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation andtransport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of300 g cm−3 and areal density of 0.49 g cm−2 at the core are taken. When a 20 MG static magnetic field isimposed across a conventional cone-free target, the energy coupling from the laser to the core is enhancedby sevenfold and reaches 14%. This value even exceeds that obtained using a cone-inserted target,suggesting that the magnetically assisted scheme may be a viable alternative for FI. With this scheme, it isdemonstrated that two counterpropagating, 6 ps, 6 kJ lasers along the magnetic field transfer 12% of theirenergy to the core, which is then heated to 3 keV.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2015
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2015-01-08, last modified 2022-09-30


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)