Journal Article FZJ-2015-00158

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
The usefulness of dynamic O-(2-18F-Fluoroethyl)-L-Tyrosine PET in the clinical evaluation of brain tumors in childrenand adolescents.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
SNM Reston, Va.

Journal of nuclear medicine 56(1), 88-92 () [10.2967/jnumed.114.148734]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Experience regarding O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET in children and adolescents with brain tumors is limited. Methods: Sixty-nine 18F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1–18 y) were analyzed retrospectively. Twenty-six scans to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20–40 min after injection, and time–activity curves of 18F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20–40 min after injection, followed by a plateau; and early peak (≤20 min), followed by a constant descent. The diagnostic accuracy of 18F-FET PET was assessed by receiver-operating-characteristic curve analyses using histology or clinical course as a reference. Results: In patients with newly diagnosed cerebral lesions, the highest accuracy (77%) to detect neoplastic tissue (19/26 patients) was obtained when the maximum TBR was 1.7 or greater (area under the curve, 0.80 ± 0.09; sensitivity, 79%; specificity, 71%; positive predictive value, 88%; P = 0.02). For diagnosing tumor progression or recurrence, the highest accuracy (82%) was obtained when curve patterns 2 or 3 were present (area under the curve, 0.80 ± 0.11; sensitivity, 75%; specificity, 90%; positive predictive value, 90%; P = 0.02). During chemotherapy, a decrease of TBRs was associated with a stable clinical course, and in 2 patients PET detected residual tumor after presumably complete tumor resection. Conclusion: Our findings suggest that 18F-FET PET can add valuable information for clinical decision making in pediatric brain tumor patients.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
  2. Physik der Medizinischen Bildgebung (INM-4)
  3. Nuklearchemie (INM-5)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Institute Collections > INM > INM-5
Workflow collections > Public records
Publications database

 Record created 2015-01-08, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)