Journal Article FZJ-2015-00409

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Phase correction of electromagnetic coupling effects in cross-borehole EIT measurements

 ;  ;  ;  ;  ;  ;

2015
IOP Publ. Bristol

Measurement science and technology 26(1), 015801 () [10.1088/0957-0233/26/1/015801]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Borehole EIT measurements in a broad frequency range (mHz to kHz) are used to study subsurface geophysical properties. However, accurate measurements have long been difficult because the required long electric cables introduce undesired inductive and capacitive coupling effects. Recently, it has been shown that such effects can successfully be corrected in the case of single-borehole measurements. The aim of this paper is to extend the previously developed correction procedure for inductive coupling during EIT measurements in a single borehole to cross-borehole EIT measurements with multiple borehole electrode chains. In order to accelerate and simplify the previously developed correction procedure for inductive coupling, a pole–pole matrix of mutual inductances is defined. This consists of the inductances of each individual chain obtained from calibration measurements and the inductances between two chains calculated from the known cable positions using numerical modelling. The new correction procedure is successfully verified with measurements in a water-filled pool under controlled conditions where the errors introduced by capacitive coupling were well-defined and could be estimated by FEM forward modelling. In addition, EIT field measurements demonstrate that the correction methods increase the phase accuracy considerably. Overall, the phase accuracy of cross-hole EIT measurements after correction of inductive and capacitive coupling is improved to better than 1 mrad up to a frequency of 1 kHz, which substantially improves our ability to characterize the frequency-dependent complex electrical resistivity of weakly polarizable soils and sediments in situ.

Classification:

Contributing Institute(s):
  1. Zentralinstitut für Elektronik (ZEA-2)
  2. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2015
Database coverage:
Medline ; Creative Commons Attribution CC BY 3.0 ; OpenAccess ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ZEA > ZEA-2
Institute Collections > IBG > IBG-3
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2015-01-13, last modified 2025-01-29


OpenAccess:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)