Journal Article FZJ-2015-02610

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

 ;  ;  ;  ;  ;  ;

2014
Elsevier Science Amsterdam [u.a.]

Acta materialia 67, 362 - 372 () [10.1016/j.actamat.2013.12.035]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600 °C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were used to study the evolution of the microstructure and the local chemical composition of the particles during oxidation. Our results suggest that built-in field effects control the initial stages of oxidation, with randomly oriented NiO crystallites and internal voids then forming as a result of outward diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope.

Classification:

Contributing Institute(s):
  1. Mikrostrukturforschung (PGI-5)
Research Program(s):
  1. 42G - Peter Grünberg-Centre (PG-C) (POF2-42G41) (POF2-42G41)

Appears in the scientific report 2014
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Institute Collections > PGI > PGI-5
Workflow collections > Public records
Publications database

 Record created 2015-04-14, last modified 2024-06-10


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)