Journal Article FZJ-2015-03671

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
NG2 and NG2-positive cells delineate focal cerebral infarct demarcation in rats

 ;  ;  ;  ;  ;  ;  ;

2013
Wiley-Blackwell Oxford [u.a.]

Neuropathology 33(1), 30 - 38 () [10.1111/j.1440-1789.2012.01322.x]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Focal cerebral ischemia induces cellular responses that may result in secondary tissue damage. We recently demonstrated multi-facetted spatial and temporal patterns of neuroinflammation by multimodal imaging. In the present study, we especially focus on the separation of vital and necrotic tissue, which enabled us to define a demarcation zone. Focal cerebral ischemia was induced via macrosphere embolization of the middle cerebral artery in Wistar rats. Subsequent cellular processes were investigated immunohistochemically from 3 to 56 days after onset of ischemia. We detected several infarct subareas: a necrotic infarct core and its margin adjacent to a nerve/glial antigen 2 (NG2)+ zone delineating it from a vital peri-infarct zone. Initially transition from necrotic to vital tissue was gradual; later on necrosis was precisely separated from vital tissue by a narrow NG2+ belt that was devoid of astrocytes, oligodendrocytes or neurons. Within this demarcation zone NG2+ cells associate with ionized calcium binding adaptor molecule 1 (Iba1) but not with GFAP, neuronal nuclear antigen (NeuN) or 2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNPase). During further infarct maturation NG2 seemed to be positioned in the extracellular matrix (ECM) of the demarcation zone, whereas Iba1+ cells invaded the necrotic infarct core and GFAP+ cells built a gliotic containing belt between the lesion and NeuN+ unaffected tissue. Overall, our data suggested that NG2 proteoglycan expression and secretion hallmarked demarcation as a process that actively separated necrosis from vital tissue and therefore decisively impacts secondary neurodegeneration after ischemic stroke.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 333 - Pathophysiological Mechanisms of Neurological and Psychiatric Diseases (POF2-333) (POF2-333)

Database coverage:
Medline ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Workflow collections > Public records
Publications database

 Record created 2015-06-09, last modified 2021-01-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)