Journal Article FZJ-2015-03837

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO $_{3}$ :N

 ;  ;  ;  ;  ;  ;  ;

2013
IOP Publ. Bristol

Nanotechnology 24(47), 475701 - () [10.1088/0957-4484/24/47/475701]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Atomic force microscopy (AFM), conductive AFM and electrochemical strain microscopy were used to study the topography change at the defect surface of SrTiO3:N, breakdown in the electrical conduction of the tip/sample/electrode system and ionic motion. The IV curves show resistance switching behavior in a voltage range ±6 V < U <± 10 V and a current of maximum ±10 nA. A series of sweeping IV curves resulted in an increase in ionically polarized states (surface charging), electrochemical volume (surface deformations) and sequential formations of stable surface protrusions. The surface deformations are reversible (U <± 5 V) without IV pinched hysteresis and remained stable during the resistance switching (U >± 6 V), revealing the additional necessity (albeit insufficient due to 50% yield of working cells) of surface protrusion formation for resistance switching memory.

Classification:

Contributing Institute(s):
  1. Elektronische Materialien (PGI-7)
Research Program(s):
  1. 421 - Frontiers of charge based Electronics (POF2-421) (POF2-421)

Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > PGI > PGI-7
Workflow collections > Public records
Publications database

 Record created 2015-06-10, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)